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The skills of a computational physicist are shown to be useful in the seemingly
distant field of cardiac electrophysiology. The propagation of cardiac action poten-
tials and their ability to form spiral waves are easily understood at a basic level
when standard concepts from the theory of partial differential equations are applied.
The design of computer simulations of action potential propagation is facilitated by
adapting numerical concepts routinely applied by computational physicists. These
concepts must be modified and combined with computer structures standard in com-
puter science to handle the timescale and spatial scale problems unique to the action
potential propagation problem. The resulting simulation shows how details of ion
channel dynamics determine properties of the spiral wave, including its propagation
speed, its period, its stability, and the size of the spiral core.c© 2000 Academic Press

1. INTRODUCTICON

The ideas and concepts commonly employed by computational physicists in the design of
numerical models and in the analysis of the simulation results find application well beyond
the areas traditionally assigned to physics and applied physics. In this paper, I describe my
experiences as a newly transplanted (pun is intentional) computational physicist into the
world of cardiac bioelectrical modeling, one such peripheral field. This article is thusnota
review, but instead a personal perspective. A surprisingly broad range of skills commonly
held by the computational physicist turn out to be applicable here, with many concepts
from numerical analysis, physics, and computer science not only being useful, but also
providing an unusual and insightful perspective on many topics within the field. Of course,
this is not to minimize the importance of the immense body of knowledge underlying the
two other fields, physiology and cardiology, which are absolutely essential in this type
of research. In the following, I will concentrate on one particular active research area in
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cardiac bioelectricity, that which seeks to understand how cardiac action potentials, waves
of electrical activity on the heart, propagate. The study of the properties of action potentials
is important, because disruption in their normal behavior is one of the principal killers in
the United States, causing between 200,000 and 400,000 deaths a year, both in association
with, and independently of, heart attack and related cardiac diseases.

2. WHAT MAKES AN ACTION POTENTIAL PROPAGATE?

The general theory of action potential propagation is well known. The basic principles
appear in any good physiology textbook, for example, [11]. Additional technical detail may
be found, for example, in [32]. Briefly, heart muscle is composed of many long relatively thin
cells (≈100 by 20µm) which are oriented roughly parallel to one another. A thin membrane
encapsulates each of these cells. This membrane is, for the most part, an insulator, and thus
is capable of supporting a potential drop between the inside and the outside of the cell.
This voltage is called the membrane potentialV , as depicted schematically in Fig. 1. The
membrane also separates various types of ions, including sodium, potassium, and calcium
ions, which typically have different concentrations inside and outside the cells. Embedded
in the membrane areion channels, which, when open, selectively allow passage of one or
more ion species (Fig. 1). Through numerous experiments, researchers have found that,
for most ion channels, a subset of the membrane voltage, the ion concentrations, the pH,
and/or other quantities determines the rates at which channels open and close. In turn,
the fraction of the various types of channels which are open at any given time determines
the instantaneous current passing through the membrane. These currents, along with the
currents which flow internally along the length of the cell and currents which flow outside
the cell, determine the membrane potential and the internal and external concentrations at
every point along the cell.

Clearly, then, if quantities such as the pH and the external concentrations are so slowly
varying that we can assume them to be constant, then we have a self-consistent system, with
the ion currents determining the internal ion concentrations and membrane voltage, and the
concentrations and voltages determining the currents through control of the ion channels.
For many of the tissues in the heart, the nature of this regulation is so as to make the cells
excitable—that is, if the membrane voltage is raised above a certain critical value, then many
of the channels in the cell, most notably the sodium channels, open, creating a large inward

FIG. 1. Propagation of an action potential along a cardiac cell.
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FIG. 2. Dynamics of the formation of an action potential.

current, forcing the membrane voltage very rapidly upward (Fig. 2). Following the firing
phase, more commonly called theupstrokeordepolarizationof the cell, the sodium channels
close, while potassium and calcium channels slowly open. Since potassium concentrations
are typically higher inside, while the reverse is true of calcium, the current associated with
these two ion species roughly cancel, which maintains the membrane potential at a near-
constant value. This phase is called the plateau phase, illustrated in Fig. 2. Soon thereafter,
the calcium channels close while potassium channels remain open. The membrane current
is now dominated by outward flowing potassium ions, which repolarizes the cell back to its
rest potential. The depolarization and subsequent repolarization of a cell in response to a
positive shift in the membrane voltage is referred to as anaction potential. Action potentials
initiate, through a series of events internal to the cell, a mechanical contraction of the cell
principally along its length. It is this ability of the cells to contract in concert with other
cells that is responsible for the ability of the heart to pump blood.

Once the sodium channels close following their part in initiating the upstroke, they are
inhibited from opening again for a period which is typically comparable to, or slightly longer
than, the duration of the action potential. When a cell’s sodium channels are inhibited from
opening, the cell is said to be in arefractorystate. The inability of a cell to fire immediately
after it has just fired is an important property, as we shall see later.

This description of the generation of an action potential neglects currents which flow
entirely outside the cell, or entirely inside the cell, along its length. The description is
therefore a local one, focusing essentially on one cell or a small group of cells. While, in
many cases, we can consider the region outside the cell to be effectively a constant potential
region, essentially a system ground, the voltage drops associated with the current flows
inside the cells and between cells are typically important. For our purposes, the cardiac cell
interiors may be thought of collectively as a uniformly resistive medium. The intracellular
current is thus proportional to the gradient in membrane potential,∂V/∂x, wherex is a
spatial coordinate along the length of the cell. Charging of the membrane at a particular
pointx along the cell can therefore occur when current is flowing into the pointx, say, from
the right, but not from the left. It is therefore the change in∂V/∂x with x, that is,∂2V/∂x2,
which contributes to charge buildup and therefore membrane potential buildupc∂V/∂t , at a
particular pointx, wherec is a constant proportional to the membrane capacitance. Current
flowing through the membrane at the pointx also contributes to the change in membrane
potential, as we have seen above, so the equation governing the membrane voltage at point
x along the length of a cell is

∂V

∂t
= ∂2V

∂x2
− I ion, (1)



24 NIELS F. OTANI

where all the constants have been suppressed.I ion includes all the local channel currents
discussed earlier. In two or three spatial dimensions,∂2V/∂x2 is replaced by∇ · (σ · ∇V),
whereσ is an electrical conductivity tensor representing the intracellular medium.

Consider now what happens if, as shown in Fig. 2, an action potential upstroke has just
occurred just to the right of a pointx, but cells are at rest atx and leftward ofx. The∂2V/∂x2

term is then positive atx, causing the voltageV to rise in Eq. (1). Once this voltage reaches
the threshold, the corresponding cell fires, as represented by a large negative sodium current
appearing inI ion, and the action potential has effectively been propagated one step to the
left. A point just to the left ofx now is in a similar predicament as the pointx was in a
moment ago and will be the next to fire.

This is the mechanism by which action potentials, and therefore waves of mechanical
contraction, propagate in the heart. The governing equations are Eq. (1) together with the
equations which determineI ion. When the∂2V/∂x2 term is ignored, the equations are
essentially those of a dynamical system describing the local behavior of the cell. The tools
of nonlinear dynamics are therefore relevant, and have already contributed substantially to
our understanding of excitable tissue behavior when applied to local models of cardiac cells
and ion channels. When the second derivative is reinstated, the equations are essentially
of the reaction–diffusion type, which, interestingly, allow unattenuated wave propagation,
even though the equations are essentially parabolic and therefore diffusive in nature. These
waves are distinctly different from those typically appearing in hyperbolic systems. When
two action potentials waves meet head-on, they annihilate, rather than pass through, each
other. Also, when an action potential encounters the edge of a system (which, in the heart,
would represent some anatomical object, such as a large blood vessel) it is annihilated
instead of reflected.

3. SPIRAL AND SCROLL WAVES

Perhaps the most interesting wave patterns supported by these equations are the so-
calledspiralandscroll waves, in two and three dimensions, respectively ([3, 13, 30]; see the
reference list in [29] and [4]). Although these waveforms are still a topic of controversy, many
researchers believe that they are responsible for a number of different cardiac arrhythmias,
including some which are often fatal.

Figure 3 shows one method by which these waves might be formed. Suppose, as shown
in the upper panel, a plane action potential wave is propagating upward. Next, suppose that,
just behind this wave, a group of cells fires abnormally, as is known to happen in some
situations in the heart. Cells above this abnormal firing region are still in the refractory
state, due to the recent passage of the original action potential plane wave. The abnormal
cell group therefore excites a wave which can only propagate downward and sideward, as
shown. Soon, however, the rightward propagating portion of this second wave finds that
the cells above it are no longer refractory and thus have recovered their ability to fire. This
portion of the wave can now enter this region propagating upward, and soon leftward, as
shown in the middle panel of Fig. 3. Meanwhile the downward portion of the wave has now
generated its own region of refractory cells, which follows the wavefront. As these cells
recover, the upward and leftward propagating portion of the wave soon finds that it can now
follow this formerly refractory region downward and then rightward. Clearly, this process
can continue, forming the spiral wave pattern shown in the lower panel.
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FIG. 3. One means by which a spiral wave may be produced. Results are taken from a simulation based on a
standard simplified model for excitable dynamics due to [9, 18].

Assuming that such patterns actually form in the heart, they would likely pump much
less efficiently than the normal wave pattern, which would lead quickly to oxygen de-
privation in all parts of the body, including the heart itself. The lack of oxygen changes
the electrical properties of the cardiac cells, which could lead to further anomalies and
more complicated, and therefore more serious and possibly lethal, action potential wave
patterns.

It is still not clear whether spiral waves are the principal cause of so-called “functionally
reentrant” arrhythmias. Other patterns of circulating action potentials, possessing different
dynamic properties, are also possible, including those caused by leading-circle reentry [1],
figure-of-eight reentry [7], and anisotropic reentry [5].

Simulations of various types have been designed to study these various propagation
patterns. Bidomain models (e.g., [24, 26]) take into account the regions both inside and
outside the cardiac cells. The conductivity of the extracellular space is regarded as finite in
bidomain models, not infinite, as is typically assumed by other types of models, often an
important effect. Other types of models use finite element [23] or finite volume [12] methods
to allow flexibility in specifying the spatial structure of the tissue. Still others explicitly take
into account the anatomical structure of cardiac muscle as bundles of fibers [15, 28] or
model explicity the fundamentally three-dimensional nature of ventricular myocardium.
Spiral waves in particular also exist in three dimensions, as shown in Fig. 4, where they are
generally referred to as scroll waves [8, 14].

4. NUMERICAL ISSUES IN DETAILED MODELS

Another area of current interest has to do with which aspects of ion channel dynamics
are operative in spiral waves and other reentrant patterns when all the details of realistic
ventricular muscle are included. Are spiral waves still possible? What kind of dynamics
will exist at the center of the spiral pattern? Will these dynamics, as well as the dynamics
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FIG. 4. Example of two scroll waves in three dimensions. Reprinted from [19] with permission from Elsevier
Science.

of the pattern as a whole, be stable? This topic is, in particular, important in the formulation
of drug therapies, since drugs directly target the dynamics of ion channels. To answer these
questions, we need a detailed comprehensive model of the local dynamics. Fortunately, one
exists: the Luo–Rudy dynamic (LRd) model [16, 17, 31] which contains over 60 nonlinear
equations describing the flow of ions through specialized channels in the cell membrane,
as well as dynamics of the intracellular ion concentrations.

Incorporating this type of model into a two- or three-dimensional spatial model presents
a couple of numerical challenges. One numerical complication simply concerns the time
required to evaluate over 60 equations each timestep at each computational node. The other
complication has to do with the existence of disparate timescales. The rapid upstroke of the
action potential requires a timestep on the order of microseconds, while the remainder of
the action potential develops on a relatively slow timescale (2 ms to 1000 ms and slower).
The timescale separation problem in action potential modeling differs from the one found
in many hyperbolic equation models such as those found in plasma physics, fluid dynamics,
and electrodynamics. In the latter, many types of waves are present simultaneously, with
widely differing characteristic temporal and spatial scales. In contrast, in the cardiac elec-
trophysiology, action potential waves are typically the only waves present, and their fast
timescales appear only very briefly, during the action potential upstroke. Elsewhere, the
dynamical variables evolve on a much slower timescale, although the underlying equations
still contain fast, albeit unexpressed, timescales.

We can deal with a portion of this problem by using what is called the hybrid method
in this field. (This method is unrelated to the hybrid method as defined in plasma physics.)
The fast timescales in our system come from the dynamics of the so-called gating variables,
quantities which are associated with the opening and closing of the ion channels. The
equations governing these variables are of the form

dy

dt
= − y− y∞(V)

τy(V)
, (2)

wherey is any of several gating variables, and both the equilibrium valuey∞ of y and the
characteristic timescaleτy depend on the membrane potentialV . In the hybrid model, this
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equation is advanced from timestepn to timestepn+ 1 using the formula

yn+1 = y∞(Vn)+1t (yn − y∞(Vn))e
−1t/τy(Vn). (3)

This formula would, of course, be exact for any value1t if V were constant. This property
of Eq. (3) not only limits the computational errors to those coming from the time dependence
onV , but also eliminates any numerical instability associated with the advance of the gating
variables, as would be the case, for example, if the forward Euler method were used. Use
of this method, however, does not rule out the possibility of numerical instabilities arising
from the interaction of these gating equations with other equations. In our code, we use the
hybrid model for the gating equations and the forward Euler method for the remainder of
equations involving time derivatives.

The remaining timescale disparity problems can be handled by implementing a variable
timestep method. Since, at different times, the upstroke of the propagating action poten-
tial is present at different places in the simulation system, we in general must require that
each node in the simulation grid have its own timestep and have the ability to modify
this timestep as the simulation runs. In single cell simulations, Rush and Larsen [25] ad-
justed the timestep in proportion to(dV/dt)−1 within some large range (e.g., between
10 µs and 1 ms). This condition derives from the fact thatdV/dt is typically largest in
the action potential upstroke, during which, coincidentally, the use of a small timestep is
most important. Another common method chooses the timestep from two or three values
[27, 28]. The eligible values are often chosen to be integer multiples of each other, to simplify
the bookkeeping. Another method divides the simulation region into several subdomains,
and then chooses a single, variable timestep for each of these regions [22]. The timestep for
each region is chosen based on conditions which are associated with the proximity of the
region to the action potential upstroke, either temporally or spatially.

In our simulations, we tried applying the idea of a continuously varying timestep to
each cell in our two-dimensional simulation. Each timestep was determined according to a
prescription suggested by Gear [10], using the variables we know are associated with the
fastest timescale: the membrane potentialV and the fastest gating quantity in the problem,
the sodium activation gate,m. Since our overall method is first-order in time, the error and
therefore the timestep are defined in terms of the second time derivatives:

1t = [min{εV/|∂2V/∂t2|, εm/|∂2m/∂t2|}]1/2. (4)

HereεV andεm are the error tolerances we set forV andm, respectively. Since the second
derivative is itself approximated by finite differencing with a timestep1t , the timestep must
occasionally be adjusted more than once for a given time advance to obtain consistency
between the value1t obtained from the left-hand side of Eq. (4) and the one used in
calculating the time derivatives.

A drawback to this individually variable timestep method is that it is difficult to imple-
ment implicitly. Use of an implicit method is sometimes important when spatial resolution
issues require that a small cell size be used. The diffusion term in Eq. (1) in particular can
impose a severe constraint on the timestep in these circumstances if explicit methods such
as the forward Euler method are used. The problem is that implicit methods such as the
Crank–Nicolson and backward Euler methods generally operate on all the cells at once
and return values defined everywhere at the same time. Simulations by Pollardet al. [20],
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FIG. 5. Structure of a node used in the binary tree updating scheme.

Shaw and Rudy [27], and Quanet al. [22], which used implicit methods, were therefore
required to use a single timestep across the entire system for those portions of their algo-
rithms which treated the diffusion term implicitly. This timestep was constrained to be the
smallest timestep needed for whatever reason by any cell in the simulation at the current
time.

When this variable timestepping method is applied to a system of coupled nodes, two new
problems arise: how to schedule timestep advances among the various nodes, and how to
calculate the second spatial derivatives (such as the one appearing in Eq. (1)) which couple
adjacent nodes in the simulation grid.

Since, at any particular point in the simulation, different nodes will have been advanced
to different times, it becomes a bit of a problem to decide which node to update next. The
next node to update is always the one furthest behind in time. To keep track of which node
this is, we use a scheduling algorithm based on a binary tree, a standard technique in the
field of computer science. Each node of the binary tree (to be distinguished from the nodes
of the simulation grid) contains the current timet of the node, and a maximum of four
pointers: a parent node pointer (P), two child node pointers, one called “earlier” (E) and one
called “later” (L), and a pointer to the simulation node (O), as shown in Fig. 5. Not every
pointer is defined for every binary tree node.

Once the binary tree nodes are created, their pointers are defined to form the tree structure
shown in Fig. 6. The timet associated with the nodes whose O-pointers are pointing at
simulation nodes (the rightmost nodes in Fig. 6) is defined to equal the current time of the

FIG. 6. Structure of nodes in the binary scheduling tree.
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simulation node its O-pointer points at. The E-pointer of the other tree nodes points at the
earlier of the two nodes pointed at by the E- and L-pointers, defined as the node having
the earlier timet , while the L-pointer points at the later of these two nodes. The timet
associated with these nodes is defined to be equal to the timet associated with the node
pointed to by the E-pointer.

After the tree is defined in this way, one need only follow the E-pointers starting at the
trunk node (the leftmost node in Fig. 6) to find the next simulation node to update.

Once a simulation node is updated, the tree must be modified to reflect this node’s
new current time. This is accomplished by (1) updating the tree node’s value oft for the
simulation node just advanced, (2) following that node’s P-pointer back to the parent node,
(3) updating this parent’s node’s value oft with the earlier of the times E and L point at,
(4) switching E and L if necessary, and (5) repeating (2), (3), and (4) until the trunk of the
tree is reached.

C++ is a particularly convenient language for implementing this scheduling tree, both
for defining these nodes and the node tree, and for defining the functions which make the
tree useful. This scheduling algorithm scales like log2 N per update,N being the number
of simulation nodes.

The other problem created by multiple, variable timestepping has to do with evaluating
∇ · (σ · ∇V), the term associated with intracellular or intercellular (gap-junction) resistive
coupling. Suppose that our simulation grid is two-dimensional and rectangular in space,
and that the next simulation node to update is the one located at gridpoint(i, j ). Our
update algorithm, as just described, requires that the current timet of this gridpoint must
be simultaneous with or earlier than all other gridpoints in the simulation, including in
particular the adjacent gridpoints. This situation is depicted in Fig. 7, with the current time
of the (i, j )th gridpoint and adjacent gridpoints denoted by filled circles. Also, it should
be clear that, with this “earliest-node” scheduling algorithm, all previous times of all the
nodes in the simulation must be earlier than the current time of node(i, j ). This applies in
particular to nodes adjacent to node(i, j ) evaluated at timest one timestep prior to their
current times, as denoted by the open circles in Fig. 7. Linear interpolation (as opposed
to extrapolation) to evaluate the membrane voltagesV at the current time of node(i, j ) is
therefore possible, as denoted by the diamonds in Fig. 7. Calculation of∇2V at the current
time t at node(i, j ) can then proceed in the standard way using these interpolated adjacent

FIG. 7. Interpolation scheme used to calculate the∇2V term when individual cells are advanced using a
variable timestep method. The vertical direction represents increasing timet , while the horizontal directions
represent the two spatial dimensions of the simulation. The simulation grid is shown beneath the interpolation
scheme, for reference.
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node voltages

∇ · (σ · ∇V) ≈ σi i
V interp

i+1, j (t)− 2Vi, j (t)+ V interp
i−1, j (t)

1x2

+ σ j j
V interp

i, j+1(t)− 2Vi, j (t)+ V interp
i, j−1(t)

1y2
, (5)

whereσi i andσ j j are the conductivities, and1x and1y are the simulation grid spacings, in
the i and j directions, respectively. These directions are assumed to lie along the principal
axes of the conductivity tensorσ .

5. SOME RESULTS

Preliminary simulations have been conducted employing these numerical techniques. We
used a rectangular grid, 256 by 256 cells, with equal spacing and equal resistances coupling
adjacent cells each direction. Cells were chosen to be 293µm square. The simulation cells
were thus larger than actual cells. This is computationally and physiologically acceptable,
since the dimensions of both our simulation cells and actual cells are much smaller than
the characteristic length scale in this problem (about 1 mm). Other parameters were chosen
to represent normal cardiac tissue. The accuracy of the model was tested by measuring the
propagation speed of a plane wave action potential traveling into a region of cells sitting
at the rest potential. We find that the propagation speed varies less than 2% when either
the grid spacing or the timestep error parametersεV andεm are decreased by a factor of
two. The propagation speed obtained, 49 cm/s, is comparable to that obtained in normal
ventricular tissue.

We next created a spiral wave by first initiating a propagating action potential from the
bottom of the system and then starting a second potential from the left side of the system,
after a delay of 220 ms. The results are summarized in Fig. 8.

When viewed in terms of the intracellular calcium concentration (Fig. 8a), the spiral wave
has a substantial central “core” region, a relatively quiescent region surrounding the center
of rotation, an eye for the spiral wave hurricane, around which the wave rotates. In contrast,
when viewed in terms of the membrane potential (Fig. 8b), no such core region exists—the
action potential extends right up to the center of rotation. As we have come to expect of
computational methods, one of the major benefits of simulation is that we have access to all
the variables everywhere in space and time, and thus have all the tools necessary to construct
a complete picture of the underlying process. In this case, the “calcium core” may be
explained by a short sequence of events, which, despite its simplicity, illustrates the detailed
and comprehensive nature of the LRd model and the interdependence of its many parts.

We start by examining the time history of the membrane at several locations close to
the center of rotation (Fig. 8c). The trace taken closest to the center shows near-sinusoidal
behavior with a minimum (−58 mV) well above the resting potential of the cell (−86 mV).
This time-averaged elevation of the membrane potential comes about through the “electronic
effect,” that is, the action of the diffusion term appearing in Eq. (1) spreading the higher
membrane potential associated with the nearby rotating action potential into the core region.
It is well known that elevated membrane potentials like this inactivate, that is, turn off,
the sodium channels, the key players in producing the action potential upstroke, as we
have already discussed. It is still possible for the cell to generate something resembling
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FIG. 8. Simultaneous snapshots of (a) the intracellular calcium concentration and (b) the membrane potential
from a 2-d LRd simulation of normal ventricular myocardium. (c) Plots of the membrane potential vs time at
different distances from the center of rotation of the spiral wave from the same simulation.

FIG. 9. Snapshot of the membrane potential from a two-dimensional LRd simulation of hyperkalemic tissue
([Ca2+]i). The curly black line represents the trajectory of the spiral tip.
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an action potential using its L-type calcium channels in place of sodium channels, as is
probably occurring in the action potential trace 1.2 mm from the core center in Fig. 8c.
This action potential, however, possesses a much slower upstroke than one produced by
sodium. For example, compare this upstroke to one driven by substantial sodium influx
3.5 mm from the core in Fig. 8c. In a normal upstroke, the rapid change in membrane
potential induces a substantial release of calcium into the main intracellular compartment
from the sarcoplasmic reticulum, a structure internal to the cell. The lack of sodium current
near the center of rotation removes this mechanism from the core region. The intracellular
calcium concentration thus remains low at and near the center of rotation compared to the
surrounding area, forming the calcium core region seen in Fig. 8a.

We also conducted other simulations to get a feeling for the scope of possibilities. When
the extracellular potassium concentration is raised to 14 mM (hyperkalemia) from a normal
value of 5.4 mM, for example, the result is a spiral wave with a strikingly different appearance
(see Fig. 9). Rather than rotating around a single fixed location, the tip of the spiral wave
traces out a flower-shaped pattern. This behavior, called meandering, has also been observed
in other spiral wave models [2, 6]. Other features of note are a slower propagation speed
(11 cm/s vs 37 cm/s), slower rotation speed (a period of 300 ms vs 90 ms), and a much longer
period between action potentials (180 ms vs 15 ms). This last distinction also turns out to
be important—if the interval between action potentials is short, the interaction between the
head and tail of the action potential is strong, which can lead to instability and possible
termination of sections of the wavefront. The surviving wavefront segments often form
more spiral waves centered around their newly created endpoints. The repetitive occurrence
of this sequence of events is called spiral wave breakup [21] and generally leads to a very
complicated propagation pattern many believe is associated with ventricular fibrillation,
among the deadliest of cardiac arrhythmias.

We also tried a simulation with abnormally high coupling resistance (138 times our “nor-
mal” value). The characteristic length scale is no longer much larger than the simulation cell
spacing (here, 100µm), so individual cells now express themselves. We find the conduction
velocity is very much slowed (1.1 cm/s), as expected, and the overall size of the spiral wave
is much smaller. The spiral wave core as viewed in terms of the depressed calcium concen-
tration now consists of only about eight simulation cells. Meandering of the spiral wave is
again present, this time apparently caused by cell discreteness. As the calcium-depressed
core moves away from individual cells, those cells are then hit by sodium-influx wavefronts,
causing abnormally large induced calcium releases and correspondingly large, transitory
increases in the local intracellular calcium concentration. The effects of these observed
phenomena on the dynamics of the wave have yet to be ascertained.

Our preliminary two-dimensional LRd simulations have thus exhibited many of the fea-
tures we will be interested in investigating in the future, including spiral wave stability and
meandering, large variations in spiral wave parameters, such as phase velocity, duration
of the period between action potentials, and rotation period, and many effects due specifi-
cally to the LRd ion channel dynamics, such as those relating to the excitablity, membrane
potential, and dynamics of the spiral core or center of rotation.

6. SUMMARY

Computer simulations of problems arising outside the physics mainstream often require
computational techniques equal in complexity to those involved in more traditional areas of
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physics and applied physics. The study of cardiac bioelectricity is one such area. While the
problems in this area involve an understanding of fields such as physiology and cardiology,
a surprising number of fields familiar to computational physicists turn out to be quite useful.
These include an understanding of numerical methods, dynamical systems, ordinary and
partial differential equation theory, theory of electromagnetic fields and electrodynamics,
statistical mechanics and probability theory, and fluid dynamics. In this brief exposition,
we have demonstrated how knowledge of the diffusion equation combined with nonlinear
dynamics leads to a basic understanding of how action potentials propagate, how they anni-
hilate one another, and how they form complex patterns such as spiral waves. Numerically,
we have seen how a familiarity with the notions of timestepping, finite differencing, linear
interpolation, method accuracy, and stability leads to an algorithm which efficiently handles
the disparate timescales existing at different times and different places in the simulation.
We have seen how basic computer structures such as binary trees and rectangular grids may
be combined to provide an effective implementation of the chosen numerical algorithm.
Such a relationship in turn demonstrates how a computational physicist can be useful in
other fields, and conversely, how these fields can be fertile ground for problems of interest
to the computational physicist.
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